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Research profile

I work on the areas of applied and computational harmonic analysis, compressive sensing,
nonasymptotic random matrix theory, recovery problems for functions in high dimensions, and
convex optimization.

Editorships

• Acta Applicandae Mathematicae (since 2010)

Research Area G My research within Research Area G focuses on the non-asymptotic ana-

lysis of certain random matrices arising in compressive sensing [2, ?], as well as on related
deviation and moment inequalities.
Recovery of sparse expansions in redundant dictionaries from random measurements was
studied in [4]. I showed the first (near-)optimal nonuniform recovery result for partial random
circulant matrices in [?]. As crucial tool, I extended noncommutative Khintchine inequalities on
the moments of matrix-valued Rademacher sums in Schatten-class norms to derived noncom-
mutative Khintchine inequalities for Rademacher chaos expansions of order two [?]. The best
estimates available so far on the so-called restricted isometry constants of partial random circu-
lant matrices were shown in [?]. The first probabilistic analysis of multichannel sparse recovery
via convex relaxation was derived in [3].

Research Area J My research within Research Area J focuses on compressed sensing [2] and



its potential for attacking high-dimensional problems, as well as on function spaces suitable for
the analysis of high dimensional problems.
Gelfand widths are closely related to the best possible performance of recovery algorithms and
measurement matrices. Good models for compressible signals are `p-balls with 0 < p ≤ 1, so
that it is important to understand the Gelfand widths of such `p-balls.
The case p = 1 was already derived in the 1980ies by Kashin and Gluskin-Garnaev. In [?], we
were able to provide lower bounds, which are new for the case p < 1. In [?], we were able to
provide lower bounds, which are new for the case p ¡ 1.
Based on random sampling of sparse multivariate trigonometric polynomials via compressive
sensing [?], we introduced a model of functions in high-dimensions that promotes “sparsity
with respect to dimensions”, that is, the function to be recovered from samples is allowed to be
rough only in a small number of a priori unknown variables, and smooth with respect to most
variables. It is shown in [1] that such functions can be reconstructed via compressive sensing
techniques with small error from a number of samples that scales only logarithmic in the spatial
dimension - in contrast to many models, which suffer the curse of dimension, i.e., an exponen-
tial scaling.
Optimization algorithms for inverse problems regularized by joint sparsity constraints were de-
veloped and analyzed in [?, ?].
The analysis of sparse grid methods for high dimensional problems often uses function spaces
of dominating mixed smoothness as a model class. New characterizations using orthonormal
and biorthogonal wavelets and local means were derived in [?].

Former Research Area L My research within Research Area L focuses on compressive sen-

sing [2], low-rank matrix recovery and matrix completion, and, in particular, on efficient algo-
rithms for these tasks.
The goal of compressed sensing is to recover a sparse vector x from incomplete linear infor-
mation y = Ax, where A is an m×N matrix with m � N . This leads to the problem of finding
the sparsest vector consistent with a linear system of equations (the so-called `0-minimization
problem). Unfortunately, this problem is NP hard in general. It came as a surprise, that under
certain conditions on the matrix A, a sufficiently sparse vector x can nevertheless be recovered
exactly using efficient algorithms such as `1-minimization or certain greedy algorithms.
Low rank matrix recovery extends the ideas of compressed sensing to the reconstruction of
low rank matrices from a small number of linear measurements. A particular instance is matrix
completion, where one seeks to fill in missing entries of a low rank matrix. While this problem
is NP hard as well, it could nevertheless be shown that under certain assumptions efficient
algorithms such as nuclear norm minimization can recover low rank matrices exactly. Together
with M. Fornasier and R. Ward (Preprint arXiv:1010.2471) an efficient algorithm based on itera-
tively reweighted least squares minimization was developed and analyzed. The algorithm beats
standard semidefinite programming techniques by far.

Supervised theses

Diplom theses: 3, currently 2
PhD theses currently: 3

Selected PhD students

Ulas Ayaz (2014): “Time-Frequency and Wavelet Analysis of Functions with Symmetry Proper-
ties”,
now Postdoctoral Associate, MIT Laboratory for Information and Decision Systems, MA, USA
Zeljka Stojanac (2016): “Low-rank Tensor Recovery”
Max Hügel (since 2011)
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